CHAPTER-7

TRIANGLES

KEY POINTS

- Two figures having the same shape and size are called congruent figures.
- Two plane figures are congruent, if each one when superimposed on the other, covers the other exactly.
- Two line segments are congruent, if they are of equal lengths.
- Two angles of equal measures are congruent.
- Two circles of the same radii are congruent.
- Two squares of the same sides are congruent.
- Two rectangles are congruent, if they have the same length and breadth.
- If two triangles ABC and DEF are congruent under the correspondence A \longleftrightarrow D, B \longleftrightarrow E and C \longleftrightarrow F, then symbolically, it is expressed as \triangle ABC \cong \triangle DEF.
- There are four congruent conditions for triangles.
 - (a) Side-Angle-Side (SAS) congruent rule: Two triangles are congruent, if two sides and the included angle of the one triangle respectively equal to the two sides and the included angle of the other triangle.
 - (b) Angle-Side-Angle (ASA) congruence rule: Two triangles are congruent, if two angles and the included side of the one triangle are respectively equal to the two angles and the included side of the other triangle.
 - (c) **Side-Side (SSS) congruence rule :** Two triangles are congruent, if the three sides of one triangle are respectively equal to the three sides of the other triangle.
 - (d) Right angle-Hypotenuse-Side (RHS) congruence rule: Two right triangles are congruent, if the hypotenuse and one side of one triangle are respectively equal to the hypotenuse and one

side of the other triangle.

- Angles opposite to equal sides of a triangle are equal.
- Sides opposite to equal angles of a triangle are equal.
- In a triangle, angle opposite to the longer side is larger (greater).
- In a triangle, side opposite to the larger (greater) angle is longer.
- Sum of any two sides of a triangle is greater than the third side.

Part - A

1.	Which of the following is not a congruence criterion for triangles?	
	(a) SSS	(b) RHS

2. If
$$AB \cong CD$$
 then

(a)
$$AB < CD$$
 (b) $AB + CD = 0$ (c) $AB = CD$ (d) $AB > CD$

3. If
$$\triangle ABC \cong \triangle DEF$$
 then

4. Circle
$$O_1 \cong \text{Circle } O_2$$
. If radius of circle $O_1 = 6$ cm then diameter of circle O_2 is _____.

- 6. If $\triangle PQR \cong \triangle DEF$ then $Q \longleftrightarrow \underline{\hspace{1cm}}$
- 7. Which is the longest side of the triangles given in the figure?

8. Which is the largest angle in the $\triangle PQR$?

9. Which two triangles are congruent in the given figure. Write them in symbolic form.

10. Two squares are congruent if they have ______

11. Match the columns:

12. Match the columns:

Column A

Column B

(i)
$$\underset{A}{\overset{\bullet}{\leftarrow}} \times \underset{B}{\overset{\bullet}{\Rightarrow}} \cong \underset{P}{\overset{\bullet}{\leftarrow}} 10 \text{ cm } \underset{Q}{\overset{\bullet}{\Rightarrow}}$$
 $x = ?$ (a) 2 cm

(ii)
$$\left(\begin{array}{c} x \\ O \end{array}\right) \cong \left(\begin{array}{c} 2 \text{ cm} \\ \end{array}\right)$$
 $x = ?$ (b) 5 cm

(iii)
$$X = \mathbb{R}$$
 $X = \mathbb{R}$ (c) 10 cm

(iv)
$$x =$$
 (d) 4 cm

(v)
$$4 \text{ cm}$$

R

C

X

X = ? (e) 11 cm

13. In the given figure. If AB = CD, AD = BC then prove that \triangle ADC \cong \triangle CBA

- 14. If $\triangle ABC$ is an isosceles triangle such that AB = AC, then prove that altitude AD from A on BC bisects it.
- 15. Which criteria of congruence of triangles is satisfied in the given figure.

- 16. In a $\triangle PQR$, $\angle P = 110^{\circ}$, PQ = PR. Find $\angle Q$ and $\angle R$.
- 17. In the given figure AB = AC and \angle ACD = 125°. Find \angle A

- 18. In $\triangle ABC$, if $\angle A = 55^{\circ}$, $\angle B = 75^{\circ}$ then find out the smallest and longest side of the triangle.
- 19. In the given figure, AC bisects $\angle A$ and $\angle C$. If AD = 5 cm find AB.

20. The vertex angle of an isosceles triangle is 80°. Find out the measure of base angles.

Part - C

21. In the given figure, Q is a point on the side SR of \triangle PSR such that PR = PR. Prove that PS > PQ.

- 22. ABC is a triangle and D is the mid-point of BC. The perpendicular from D to AB and AC are equal. Prove that triangle is isosceles.
- 23. Prove that angles opposite to the equal sides of an isosceles triangle are equal.
- 24. In the given figure, AC > AB and AD bisects \angle BAC.

Prove that $\angle ADC > \angle ADB$.

- 25. S is any point in the interior of a $\triangle PQR$. Prove that SQ + SR < PQ + PR.
- 26. In the given figure, if AD = BD = CD. Find \angle BAC.

27. In the given figure, if AB = BC and \angle A = \angle C then find the value of x.

28. In the given figure, ∠ABC = ∠BAC, D and E are points on BC and AC respectively such that DB = AE. If AD and BE intersect at O then prove that OA = OB.

29. In the given figure, if AB = AC, \angle BAD = \angle CAE then prove that \triangle ADE is an isosceles triangle.

- 30. In $\triangle DEF$, $\angle E = 2 \angle F \cdot DM$ is the angle bisector of $\angle EDF$ that intersects EF at M. If DM = MF, then prove that $\angle EDF = 72^\circ$.
- 31. Prove that the angles of an equilateral triangle are 60° each.
- 32. In the given figure, $\angle a > \angle b$, show that $\angle ATM < \angle AMT$.

Part - D

- 33. AF, BD and CE altitudes of \triangle ABC are equal. Prove that \triangle ABC is an equilateral triangle.
- 34. Prove that two triangles are congruent if two angles and the included side of one triangle are equal to the two angles and the included side of the other triangle.
- 35. O is any point in the interior of a \triangle ABC. Prove that $OA + OB + OC > \frac{1}{2}$ (AB+BC+CA).
- 36. Prove that the perimeter of a triangle is greater than the sum of its three altitudes.
- 37. Two sides AB, BC and median AM of one \triangle ABC are respectively equal to sides PQ, QR and median PN of \triangle PQR. Show that :
 - (i) $\triangle ABM \cong \triangle PQN$
 - (ii) $\triangle ABC \cong \triangle PQR$
- 38. In the given figure, PQR is a triangle in which altitudes QS and RT to sides PR and PQ are equal. Show that
 - (i) $\Delta PQS \cong \Delta PRT$
 - (ii) PQR is an isosceles triangle

39. In the given figure, AB = AD, $\angle 1 = \angle 2$ and $\angle 3 = \angle 4$. Prove that AP = AQ.

79

40. In the given figure, ABC is a right angled triangle, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. D is joined to B. Prove that $CM = \frac{1}{2}AB$

- 41. Prove that the sum of any two sides of a triangle is greater than its third side.
- 42. Vandana wishes to literate the poor children of the nearby slum area. She makes flash cards for them as shown in the given figure.

- (a) Which two flash cards are congruent?
- (b) Which criteria of congruency is satisfied here?
- (c) Write the third side of both the triangles which are equal by CPCT.
- 43. Prove that the sum of any two sides of a triangle is greater than twice the median drawn to the third side.
- 44. In the given figure, AB = CD, CE = BF and ∠ACE = ∠DBF. Prove that

- (i) $\triangle ABD = \triangle DBF$
- (ii) AE = DF

CHAPTER-7

TRIANGLES

ANSWERS

1. (c)

- 2. (c)
- 3. (i) DE
- (ii) EF
- (iii) FD

- (iv) ∠B
- (v) ∠BAC
- (vi) ∠EFD

- 4. 12 cm
- 5. ∠BOD
- 6. E

7. BC

- 8. ∠Q
- 9. ∆LOM≅∆QOP

- 10. same sides length
- 11. (i) (b)
- (ii) (a)
- (iii) (d)

- (iv) (c)
- 12. (i) (c)
- (ii) (a)
- (iii) (e)

- (iv) (b)
- (v) (d)

- 15. SAS
- 16. $\angle Q = \angle R = 35^{\circ}$
- 17. $\angle A = 70^{\circ}$

18. Smallest side = AB

Longest side = AC

- 19. AB = 5 cm
- 20. $50^{\circ}, 50^{\circ}$
- 26. $\angle BAC = 90^{\circ}$

- 27. 75°
- 42. (a) (i) and (iii)
 - (b) $\triangle ABC \cong \triangle QRP (SAS Congruency)$
 - (c) BC = PR
- 43. (a) BD

PRACTICE TEST

Time: 50 Min. Triangles M.M. 20

1. Find the measure of each exterior angle of an equilateral triangle.

(1)

- 2. Which of the following is not a criterion for congruence of triangles? (1)
 - (a) SSA
- (b) SAS
- (c) ASA
- (d) SSS
- 3. In a $\triangle ABC$, If AB = AC and $\angle A = 70$. Find $\angle B$ and $\angle C$. (2)
- 4. The vertical angle of an isosceles triangle is 100°. Find its base angle. (2)
- 5. In the given figure, ABC is a triangle in which AB = AC, side BA is produced to D such that AB = AD. Prove that \angle BCD = 90°. (3)

6. In the given figure, if AB =BC and \angle A = \angle C. Then find the value of x.

7. In the given figure, C is the midpoint of AB, if ∠DCA =∠ ECB.and ∠DBC = ∠EAC, Prove that DC = EC and BD = AE.

8. In the given figure ABC is a right angled triangle, right angled at C. M is the midpoint of hypotenuse is joined to M and produced to a point D such that DM = CM. D is joined to B.

Show that CM = $\frac{1}{2}$ AB.