CHAPTER-10

CIRCLES

KEY POINTS

 The collection of those points in a plane which are at a fixed distance from a given fixed point is called a circle. That fixed point is called centre of the circle and that fixed distance is called radius.

Circle and related Terms!

- There is one and only one circle passing through three non-collinear points.
- Equal chords of a circle subtends equal angles at centre.
- If angles subtended by chords at centre are equal then chords are equal.
- The perpendicular from centre to a chord of a circle, bisects the chord.

• The line joining the centre of a circle to the mid point of a chord is perpendicular to the chord.

- Equal chords of a circle are equidistant from centre.
- Chords equidistant from centre are equal in length.

- If two chords of a circle are equal then corresponding arcs are equal.
- If arcs of a circle are equal then corresponding chord are also equal.

 Congruent arcs (or equal arcs) of a circle subtends equal angle at centre.

• The angle subtend by an arc at the centre of circle is twice the angle which is subtend at remaining part of the circle.

• Any two angles in the same segment of the circle are equal.

⇒ ∠APB=∠AQB

• Angle of semi circle is right angle.

 \Rightarrow $\angle APB = 90^{\circ}$

In a cyclic quadrilateral the sum of opposite angles is 180°.

• If sum of opposite angles of a quadrilateral is 180° then that quadrilateral is cyclic quadrilateral.

Part - A

- 1. If the sum of a pair of opposite angles of a quadrilateral is 180°, then quadrilateral is ______.
- 2. A round pizza is cut into 4 equal pieces. What does each piece represent?
- 3. AD is a diameter of a circle and AB is a chord if AD = 34cm, AB=30 cm then find the distance of AB from the centre of chord.
- 4. Given two concentric circles with centre O. A line cut the circle at A, B, C and D respectively. If AB = 10cm, then find the length of CD.
- 5. Find y in given figure

6. Find x

7. Find x

8. Diameter is the _____ Chord of a circle.

9. Circle having the same centre and different radii are called _____ circles.

10. In given figure OC is perpendicular segment drawn from centre O on chord AB. If OB = 5cm, and OC = 3cm then find length of AB.

11. In given figure O is centre of circle.

If $\angle AOC = 130^{\circ}$ then find $\angle ABC$

12. In given figure AOB is diameter of circle & P is any point on the circle.

Find ∠APB.

13. Find the value of x in given figure.

Part - B

- 14. Prove that cyclic parallelogram is a rectangle.
- 15. A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.
- 16. In the following figure. Find the value of ∠BCN.

17. In the given figure. Find the value of reflex angle POR.

18. In given figure ABCD is a cyclic quadrilateral, chords AB and CD are produced to meet E, show that EAxEB = ECxED.

19. Find the value of x in figure if O is centre of circle and $\angle OAB = 50^{\circ}$.

20. In the given figure, O is centre of the circle with radius 5 cm, OP \perp CD, OQ \perp AB, AB || CD, AB = 6 cm and CD = 8 cm. Determine PQ.

21. In the given figure, O is the centre of a circle, $\angle AOB = 90^{\circ}$, $\angle BOC = 120^{\circ}$, what is measure of $\angle ABC$?

22. In the given figure AB and CD are parallel chords if the length of arc AC = 14 cm. What is length of BD?

23. In given figure \angle PQR = 100 $^{\circ}$ where P, Q & R are points on the circle with centre O. Find \angle OPR.

24. In the given figure O is centre of circle, if $\angle ABD = 35^{\circ}$ and $\angle BAD = 70^{\circ}$ find $\angle ACB$.

Part - C

25. In the given figure, O is the centre of a circle prove that $\angle x + \angle y = \angle z$.

- 26. If two non parallel sides of a trapezium are equal prove that it is cyclic quadrilateral.
- 27. In the given figure determine a, b & c if \angle BCD = 43°, \angle BAF = 62°.

28. In the figure P is the centre prove that $\angle XPZ = 2(\angle XZP + \angle YXZ)$

108

29. In the given figure AD is diameter of the circle whose centre is O and AB || CD prove that AB = CD.

- 30. In an equilateral triangle, prove that the centroid and the circum centre coincide.
- 31. In the given figure A, B, C and D, E, F are two sets of collinear points. Prove that AD || CF.

32. In given figure, O is centre of circle and $\angle DAB = 50^{\circ}$, calculate the value of x and y.

- 33. If two equal chords of a circle intersect within the circle prove that the segment of one chord is equal to corresponding segment of other chord.
- 34. Prove that if a pair of opposite angles of a quadrilateral is supplementary then the quadrilateral is cyclic.

35. Bisector of angle A, B and C of a ∆ABC intersect its circum circle at D, E and F respectively, prove that the angles of a triangle DEF are

$$90^{\circ} - \frac{1}{2} \text{ A}, \ 90^{\circ} - \frac{1}{2} \text{ B}, \ 90^{\circ} - \frac{1}{2} \text{ C}$$

- 36. Find the sum of the angles in the four segments exterior to a cyclic quadrilateral.
- 37. Let the vertex of an angle ABC be located outside a circle and let the sides of the angle intersect equal chords AD and CE with the circle. Prove that ∠ABC is equal to half the difference of the angles subtended by the chords AC and DE at the centre.

$$\angle ABC = \frac{1}{2} [\angle DOE - \angle AOC]$$

38. In the given figure O is centre of the circle of radius 5 cm, $\mathsf{OP}\bot\mathsf{CD},\mathsf{AB}||\mathsf{CD}|$

AB = 6 cm and CD = 8 cm

Determine PQ

39. In the adjoining figure AC is diameter of a circle with centre O and chord BD \perp AC, intersecting each other at E. Find out the values of p, q, r in terms of x, if \angle AOD = x^0 , \angle BAC = p^0 , \angle ACD = q.

- 40. During a practical activity in maths lab students were using circular geo board. The angle subtended by an arc at the centre is $(2a+50^{\circ})$. Pallavi calculated \angle BAC as $(a+25^{\circ})$.
 - a) Is her finding correct? Justify it.
 - b) Find \angle BAC if a = 30°
 - c) What will be the value of $\angle BOC$ for a = 15°
 - d) If $a = 30^{\circ}$ then find the measure of Reflex \angle BOC. R

- 41. Show that if two chords of a circle bisect each other, they must be diameters of the circle.
- 42. Prove that the quadrilateral formed by angle bisectors of a cyclic quadrilateral is also cyclic.
- 43. Prove that there is one and only one circle can pass through three non-collinear points.
- 44. In the given figure OPQR is a square. A circle drawn with centre O cuts the square in X and Y. Prove that QX = QY.

- 45. Prove that the opposite angles of a cyclic quadrilateral are supplementary.
- 46. In the given figure, AB is a diameter of a circle (o, r) and chord CD = radius oc. If AC and BD when produced meet at P. Prove that ∠APB is constant.

47. Prove that the angle subtended by an arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

48. In the given figure, AB is a chord of a circle with centre O and AB is produced to C such that BC = OB. Also, CO is joined and produced to meet the circle in D. If $\angle ACD = y^0$ and $\angle AOD = x^0$. Prove that x = 3y.

49. Two circles whose centres are O and O' intersect at P. Through P, a line 1 parallel to OO', intersecting the circle at C and D is drawn. Prove that CD = 2OO'.

50. AB and CD are two parallel chords of a circle which are on opposite sides of the centre O such that AB = 10cm, CD = 24cm and the distance between AB and CD is 17 cm. Find the radius of the circle.

CHAPTER-10

CIRCLES

ANSWERS

5.
$$y = 40^{\circ}$$

6.
$$x = 35^{\circ}$$

7.
$$x = 140^{\circ}$$

27.
$$a = 105^{\circ}, b = 13^{\circ}, c = 62^{\circ}$$

32.
$$x = 100^{\circ}, y = 130^{\circ}$$

39.
$$p = 90^{\circ} - \frac{1}{2} x, q = \frac{1}{2} x, r = 90^{\circ} - \frac{1}{2} x$$

PRACTICE TEST

Time: 50 Min. M.M. 20 **Circles**

1. Find the value of x in the given figure

- 2. In the given figure : ∠DAB = 60° and $\angle ABD = 50^{\circ}$, then $\angle ACB = ?$
- 3. In given figure O is the centre of circle. If $\angle AOC = 130^{\circ}$ then find $\angle ABC$.

- 4. Prove that equal chords of a circle subtend equal angles at the centre. (2)
- Prove that the sum of either pair of the opposite 5. (3) angle s of a cyclic quadrilateral is 180°.
- 6. In the given figure, O is the centre of a circle prove that

$$\angle x + \angle y = \angle z$$

7.

(4) that BC = OB Also, CO is joined and

(3)

produced to meet the circle in D. If $\angle ACD = y^{\circ}$ and $\angle AOD = x^{\circ}$. Prove that x = 3y.

In the given figure, AB is a chord of a circle

with centre O and AB is produced to C. Such

Prove that the angle subtended by an arc of a circle at the centre 8. is double the angle subtended by it at any point on the remaining part of the circle. (4)