

Chapter - 3

Metals And Non-Metals

- Elements can be classified as metals and non-metals on the basis of their properties.
- Example of some metals are : Iron (Fe), Aluminium (Al), Silver (Ag), Copper (Cu)
- Examples of some non-metals are:
 Hydrogen (H), Nitrogen (N), Sulphur (S), Oxygen (O)

I. PHYSICAL PROPERTIES

PROPERTY	METALS	NON-METALS
1. Lustre	Metals have shining surface.	They do not have shining surface. • Except Iodine.
2. Hardness	They are generally hard. • Except Sodium, Lithium and Potassium which are soft and can be cut with knife.	Generally soft. • Except Diamond, a form of carbon which is the hardest natural substance.
3. State	Exist as solids. • Except Mercury.	Exist as solids or gaseous. • Except Bromine.
4. Malleability	Metals can be beaten into thin sheets.Gold and Silver are the most malleable metals.	Non-metals are non-malleable.

5. Ductility	Metals can be drawn into thin wires.	They are non-ductile.
6. Conductor of heat & elec tricity		Non-metals are poor conductor of heat and electricity. • Except Graphite.
7. Density	Generally have high density and high melting point. • Except Sodium and Potassium.	Have low density and low melting point.
8. Sonorous	Metals produce a sound on striking a hard surface.	They are not sonorous.
9. Oxides	Metallic oxides are basic in nature.	Non-metallic oxides are acidic in nature.

II. CHEMICAL PROPERTIES OF METALS

(A) Reaction with Air:

Metals combine with oxygen to form metal oxide.

$$Metal + O_2 \rightarrow Metal oxide$$

Examples:

(i)
$$2Cu + O_2 \rightarrow 2CuO$$

Copper oxide (black)

(ii)
$$4Al + 3O_2 \rightarrow 2Al_2O_3$$

Aluminium oxide

(iii)
$$2Mg + O_2 \rightarrow 2MgO$$

Different metals show different reactivities towards O₂.

- Na and K react so vigorously that they catch fire if kept in open so they are kept immersed in kerosene.
- Surfaces of Mg, Al, Zn, Pb are covered with a thin layer of oxide which prevent them from further oxidation.
- Fe does not burn on heating but iron fillings burn vigorously.
- Cu does not burn but is coated with black copper oxide.

Au and Ag does not react with oxygen.

AmphotericOxides: Metaloxides which react with both acids as well as bases to produce salts and water are called amphoteric oxides.

Examples :
$$Al_2O_3 + 6HCl \rightarrow 2AlCl_3 + H_2O$$

 $Al_2O_3 + 2NaOH \rightarrow 2NaAlO_2 + H_2O$
Sodium Aluminate

(B) Reaction of Metals with Water:

React with hot H₂O Mg

Ca and Mg float as bubbles of H₂ stick to their surface

Pb, Cu, Au, Ag

Examples:

(i)
$$2Na + 2H_2O \rightarrow 2NaOH + H_2 + Heat$$

(ii)
$$Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2$$

(iii)Mg +
$$2H_2O \rightarrow Mg(OH)_2 + H_2$$

$$(iv)2Al + 3H2O \rightarrow Al2O3 + 3H2$$

(v)
$$3\text{Fe} + 4\text{H}_2\text{O} \rightarrow \text{Fe}_3\text{O}_4 + 4\text{H}_2$$

(C) Reaction of Metals with Acids (Dilute):

Metal + Dilute acid \rightarrow Salt + H,

Cu, Ag, Hg do not react with dil. acids.

Examples:

(i) Fe + 2HCl
$$\rightarrow$$
 FeCl₂ + H₂

(ii)
$$Mg + 2HCl \rightarrow MgCl_2 + H_2$$

(iii)
$$Zn + 2HCl \rightarrow ZnCl_2 + H_2$$

$$(iv)2Al + 6HCl \rightarrow 2AlCl_3 + 3H_2$$

(D) Reaction of Metals with Solutions of other Metal Salts:

Metal A + Salt solution B \rightarrow Salt solution A + Metal B

• Reactive metals can displace less reactive metals from their compounds in solution form.

$$Fe + CuSO_4 \rightarrow FeSO_4 + Cu$$
REACTIVITY SERIES

The reactivity series is a list of metals arranged in the order of their decreasing activities.

K	Most reactive	
Na		
Ca		
Mg		
Al		
Zn	Reactivity decreases	
Fe		
Pb		
Н		
Cu		
Hg		
Ag		
Au	Least reactive	

Reaction of Metals with Non-metals

- Reactivity of elements is the tendency to attain a completely filled valence shell.
- Atoms of the metals lose electrons from their valence shell to form cation. Atom of the non-metals gain electrons in the valence shell to form anion.

E.g., Formation of NaCl

Na
$$\rightarrow$$
 Na⁺ + e⁻
2, 8, 1 2, 8
Sodium cation
C1 + e⁻ \rightarrow C1⁻
2, 8, 7 2, 8, 8
Chloride anion

$$Na^{\bullet} + \underset{\times}{\overset{\vee}{\times}} \underset{\times}{\overset{\times}{\times}} \rightarrow \left[Na^{+}\right] \left[\underset{\times}{\overset{\times}{\times}} \underset{\times}{\overset{\times}{\times}} -\right]$$

Ionic Compounds

The compounds formed by the transfer of electrons from a metal to a non-metal are called ionic compounds or electrovalent compounds.

Properties of Ionic Compounds

- 1. Physical nature: The are solid and hard, generally brittle.
- 2. Melting and Boiling Point: They have high melting and boiling point.
- **3. Solubility :** Generally soluble in water and insoluble in solvents such as kerosene, petrol etc.
- **4. Conduction of electricity :** Ionic compounds conduct electricity in molten and solution form but not in solid state.

Occurrence of Metals

Minerals: The elements or compounds which occur naturally in the earth's crust are called minerals.

Ores: Minerals that contain very high percentage of particular metal and the metal can be profitably extracted from it, such minerals are called ores.

Extraction of Metals from Ores

- **Step 1.** Enrichment of ores.
- **Step 2.** Extraction of metals.
- **Step 3.** Refining of metals.

Steps Involved in Extraction of Metals from Ores

Some Important Terms

- (a) Gangue: Ores are usually contaminated with large amount of impurities such as soil, sand etc. called gangue.
- (b) Roasting: The sulphide ores are converted into oxides by heating strongly in

the presence of excess air. This process is called roasting.

$$2ZnS + 3O_2 \xrightarrow{Heat} 2ZnO + 2SO_2$$

(c) Calcination : The carbonate ores are changed into oxides by heating strongly in limited air. This process is called calcination.

$$ZnCO_3 \xrightarrow{Heat} ZnO + CO_2$$

(d) **Reduction**: Metal oxides are reduced to corresponding metals by using reducing agent like carbon.

$$ZnO + C \rightarrow Zn + CO$$

Refining of Metals

The most widely used method for refining impure metal is electrolytic refining.

• Anode: Impure copper

• Cathode: Strip of pure copper

• Electrolyte: Solution of acidified copper sulphate

- (a) On passing the current through electrolyte, the impure metal from anode dissolves into the electrolyte.
- (b) An equivalent amount of pure metal from the electrolyte is deposited at the cathode.
- (c) The insoluble impurities settle down at the bottom of the anode and is called anode mud.

Corrosion

The surface of some metals such as iron is corroded when they are exposed to moist air for a long period of time. This is called corrosion.

- (i) Silver becomes black when exposed to air as it reacts with air to form a coating of silver sulphide.
- (ii) Copper reacts with moist carbon dioxide in the air and gains a green coat of copper carbonate.
- (iii) Iron when exposed to moist air acquires a coating of a brown flaky substance called rust.

Prevention of Corrosion

The rusting of iron can be prevented by painting, oiling, greasing, galvanizing, chrome plating, anodizing or making alloys.

Galvanization: It is a method of protecting steel and iron from rusting by coating them with a thin layer of zinc.

Alloy: An alloy is a homogenous mixture of two or more metals or a metal and a non-metal.

Iron: Mixed with small amount of carbon becomes hard and strong.

Steel: Iron + Nickel and chromium

Brass: Copper + Zinc

Bronze: Copper + Tin (Sn)

Solder: Lead + tin

Amalgam : If one of the metal is mercury (Hg).

QUESTIONS

VERY SHORT QUESTIONS (1 Mark)

- 1. Name one lustrous non-metal.
- 2. Name two metals that are soft and can be cut with a knife.
- 3. Number of electrons gained or lost by an element is called its......
- 4. What are minerals?
- 5. What is the process of depositing zinc on iron called?
- 6. Which metal do not react with water at all?
- 7. Name the ion made by non-metals cation/anion.
- 8. Bronze is an alloy made by the combination of.....and.....
- 9. Name two metals that are stored in kerosene oil.
- 10. Arrange copper, silver and aluminium in increasing order of reactivity.

SHORT ANSWER TYPE QUESTIONS (2 Marks)

- 1. Give reasons:
 - (a) Why is pure gold not suitable for making ornaments?
 - (b) Why calcium is found in the form of compound?
 - (c) Why electrical wires are coated with PVC (Poly Vinyl Chloride)?
 - (d) Why do we apply oil on iron tools kept in storage?
 - (e) Why sodium is stored in kerosene oil?

SHORT ANSWER TYPE QUESTIONS (3 Marks)

- 1. Why caesium and gallium melt in our palm?
- 2. Why magnesium ribbon starts floating in hot water?
- 3. What are ionic compounds?
- 4. Complete the following chemical reactions:
 - (a) $3\text{Fe} + 4\text{H}_2\text{O} \rightarrow$
 - (b) Ca + $H_2O \rightarrow$
 - (c) $K + H_2O \rightarrow$
- 5. To obtain metal from their metal oxide, which chemical process is used? Give the chemical equation as well.

LONG ANSWER TYPE QUESTIONS (5 Marks)

- 1. What is the difference between a mineral and an ore?
- 2. Differentiate between roasting and calcinations process in metallurgy.
- 3. What is an alloy? Name the alloy which has iron, nickel and chromium as its constituent. What is the chief use of this alloy?
- 4. Explain any two ways to prevent rusting of iron.
- 5. Explain briefly electrolytic refining method.

Hints to Long Answer Type Questions

1. Mineral Ore Natural occurring chemical An ore is a mineral from which metal is obtained. substances obtained by mining 2. Roasting **Calcination** (a) Ore is heated in the (a) Ore is heated in presence of air. absence of air. (b) Convert (b) Convert Roasting Oxide ore Carbonate ore Sulphide ore

- 3. **Alloy:** It is a homogenous solid solution of one metal with one or more metals or non-metals.
 - Stainless steel, used for making utensils, equipments.
- 4. (a) By coating the surface with a thin film of oil or grease.
 - (b) By painting the surface.
 - (c) By the process of galvanization.
- 5. Refer Page no. 52 of NCERT